ББК 22.18 А-Ж

Ворович И.И., Лебедев Л.П.

Функциональный анализ и его приложения в механике сплошной среды. Учебное пособие. — М.: Вузовская книга, 2000. — 320 с.

ISBN 5-89522-089-4

В данном учебном пособии рассматриваются различные вопросы механики сплошной среды, применяя методы функционального анализа.

Книга предназначена для студентов-механиков механико-математических факультетов, студентов машиностроительных факультетов технических университетов с углубленным изучением математики, а также специалистов-механиков и математиков.

1.462.967

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
Extraordis and Att our fishers. Consumer Of Resembles	
глава 1. Общие понятия функционального	
АНАЛИЗА	10
1.1. Метрические пространства	
1.2. Некоторые метрические пространства функций	
1.3. Энергетические метрики	
1.4. Множества в метрическом пространстве	
1.5. Сходимость в метрическом пространстве	
1.6. Полные метрические пространства	
1.7. Теорема о пополнении метрического пространства	
1.8. Пространство $L^p(\Omega)$	
1.9. Банаховы и гильбертовы пространства	42
1.10. Энергетические пространства функций	bing.
для некоторых задач механики	
1.11. Соболевские пространства	
1.12. Первоначальные сведения из теории операторов	
1.13. Принцип сжатых отображений	80
1.14. Обобщенные решения задач механики	
сплошной среды	
1.15. Сепарабельность	
1.16. Компактность; критерий Хаусдорфа	
1.17. Теорема Арцела и её приложения	107
1.18. Элементы теории аппроксимации в	
нормированных пространствах	
1.19. Теорема об ортогональном разложении	
гильбертова пространства; теорема Рисса	
о представлении непрерывного линейного	
функционала в гильбертовом пространстве	120
1.20. Существование обобщенного решения	
некоторых задач механики	124
1.21. Задача упруго-пластичности при малых деформациях	130
1.22. Базисы и полные системы элементов	139
1.23. Слабая сходимость последовательности	
в гильбертовом пространстве	147

1.24. Методы Ритца и Бубнова-Галеркина	
для решения линейных задач механики	161
1.25. Криволинейные координаты; неоднородные	
краевые условия	163
1.26. Лемма Брэмбла-Гильберта и ее приложения	167
ГЛАВА 2. ЭЛЕМЕНТЫ ТЕОРИИ ЛИНЕЙНЫХ	
ОПЕРАТОРОВ И ЛИНЕЙНЫЕ ЗАДАЧИ	
МЕХАНИКИ	
2.1. Пространства линейных операторов	174
2.2. Принцип Банаха-Штейнгауза	179
2.3. Обратный оператор	182
2.4. Замкнутые операторы	186
2.5. Понятие сопряженного оператора	191
2.6. Вполне непрерывные операторы	201
2.7. Вполне непрерывные операторы	
в гильбертовом пространстве	208
2.8. Функции со значениями в банаховом пространстве	211
2.9. Спектр линейного оператора	216
2.10. Резольвентное множество замкнутого линейного оператора	220
2.11. Спектр вполне непрерывного оператора	-
в гильбертовом пространстве	223
2.12. Аналитическая природа резольвенты	
вполне непрерывного линейного оператора	233
2.13. Спектр голоморфной вполне непрерывной	
оператор-функции	237
2.14. Спектр самосопряженного вполне	
непрерывного оператора, действующего	
в гильбертовом пространстве	240
2.15. Некоторые приложения спектральной теории	
операторов	
2.16. Минимаксимальный принцип Куранта	253
ГЛАВА 3. НЕЛИНЕЙНЫЕ ЗАДАЧИ МЕХАНИКИ	
3.1. Производные по Фреше и Гато	256
3.2. Метод Ляпунова-Шмидта	
3.3. Критические точки функционала	
3.4. Нелинейные уравнения Кармана для пластины	
3.5. Выпучивание тонкой упругой оболочки	280

3.6.	Нелинейная задача статики теории	MA AL
	упругих пологих оболочек	293
3.7.	Степень отображения	
	Установившееся течение вязкой жидкости	303
ЛИТЕРА	тура	311
УКАЗАТ	Ель	